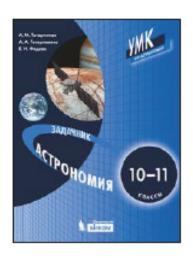
Решение разноуровневых задач по теме методы астрономических исследований

Ведущий программист ГАИШ МГУ, Учитель астрономии МОУ Гимназии №1 и МОУ Лицея №14, Руководитель астрономического кружка им Е.П. Левитана г. Жуковского, ЦПМК ВсОШ по Астрономии

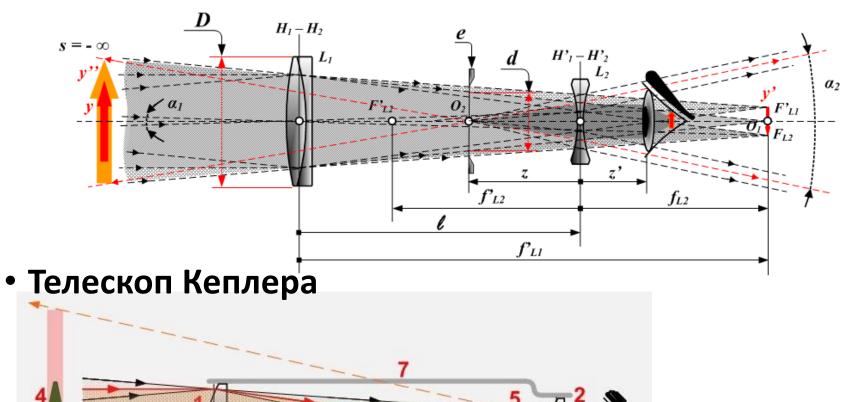

ЗАДАЧНИК (ГОТОВИТСЯ К ВЫПУСКУ)

Авторы:

ТАТАРНИКОВ Андрей Михайлович, кандидат физико-математических наук, старший научный сотрудник Государственного астрономического института им. П. К. Штернберга МГУ им. М. В. Ломоносова, автор более 60 научных статей. Педагог дополнительного образования в Астрономической школе «Вега» г. Железнодорожного. Член ЦПМК Всероссийской олимпиады школьников по астрономии и ПМК Москвы и Московской области.

ТАТАРНИКОВА Анна Александровна, кандидат физико-математических наук, старший научный сотрудник Государственного астрономического института им. П. К. Штернберга МГУ им. М. В. Ломоносова, автор более 40 научных статей. Руководитель кружка «Олимпиадная астрономия» в Москве.

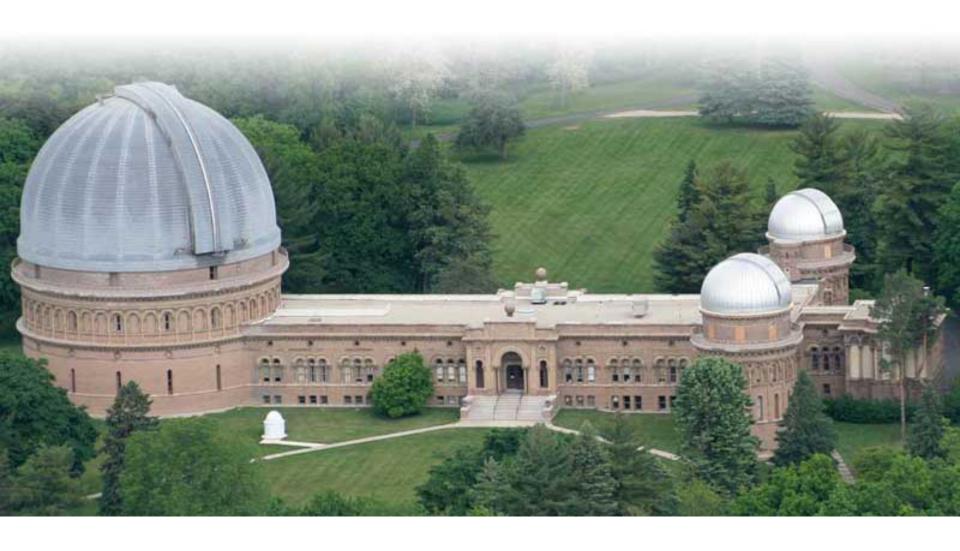
ФАДЕЕВ Евгений Николаевич, младший научный сотрудник Астрокосмического центра Физического института им. П. Н. Лебедева РАН, 9 научных статей. В 2017—2019 гг. — главный тренер команды Москвы на Всероссийской олимпиаде школьников. Член ЦПМК Всероссийской олимпиады школьников по астрономии и ПМК Москвы.


А. М. Татарников,
А. А. Татарникова,
Е. Н. Фадеев
Астрономия. 10—11 кл.
Задачник
(под ред. А. В. Засова,
В. Г. Сурдина)
Формат 70×90 1/16.
Обложка

В издании представлено более 500 задач по курсу астрономии для 10—11 классов, для большей части которых даны ответы. Задачник по содержанию и структуре соответствует учебнику А. В. Засова, В. Г. Сурдина «Астрономия. 10—11 классы». Каждая глава задачника состоит из небольшого теоретического введения, нескольких задач

с подробным решением и ответом и задач для самостоятельного решения, которые представлены на трёх уровнях сложности. Задачник можно использовать как для текущей работы на уроке астрономии, так и для подготовки к решению задачи 24 ЕГЭ по физике.

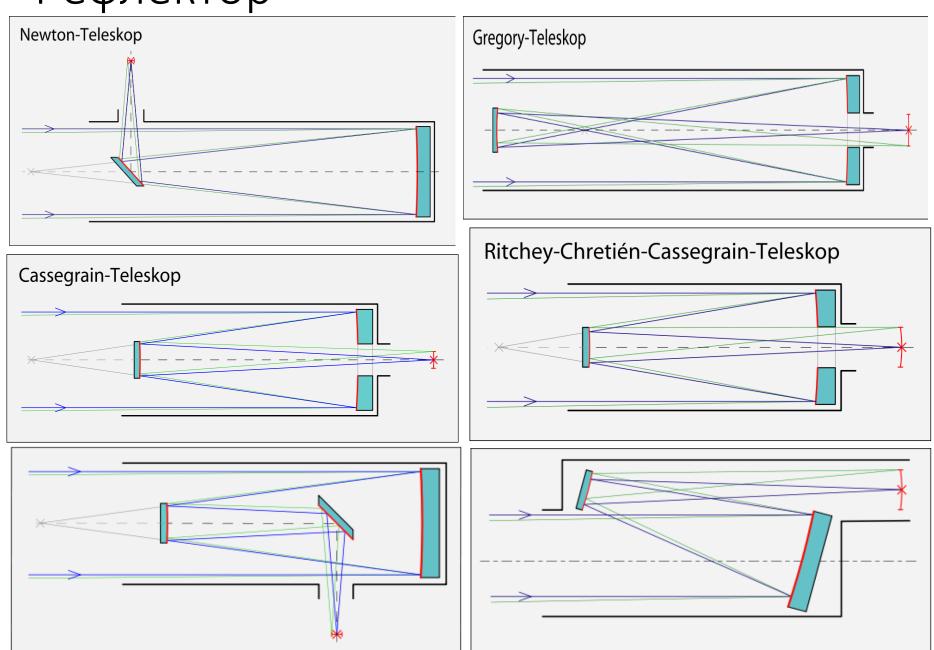
• Телескоп Галилея


Рефракторы

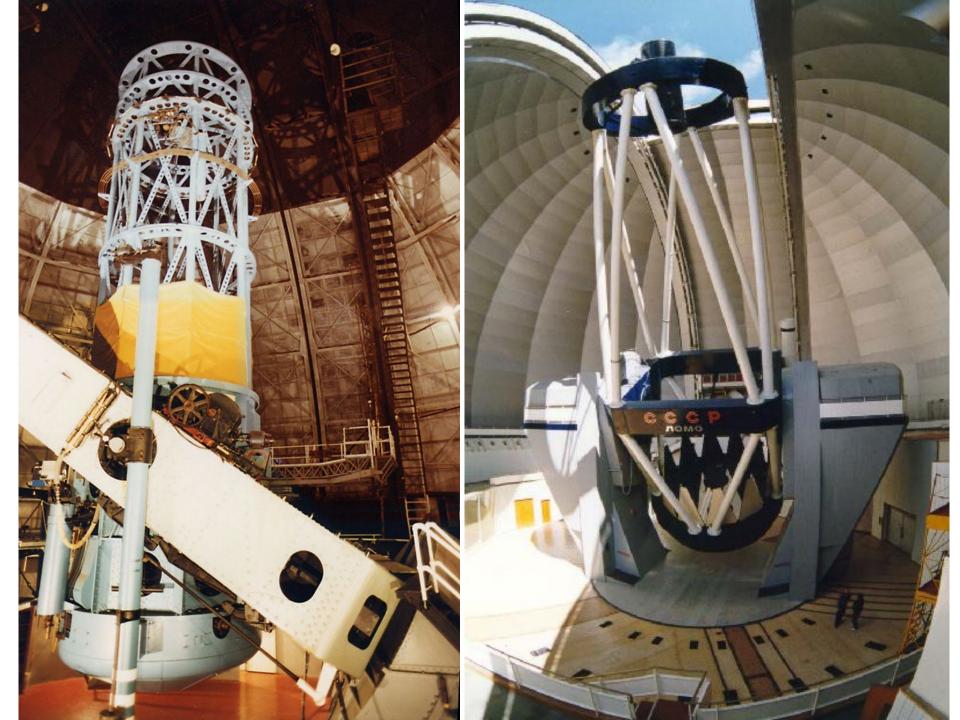
• Ахромат (2-х линзовый объектив)

• Апохромат (3-х линзовый объектив)

Йеркская обсерватория



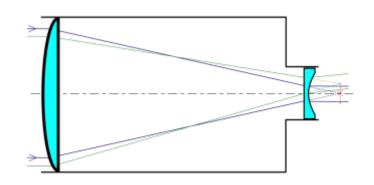
Рефрактор Кларка



Рефлектор

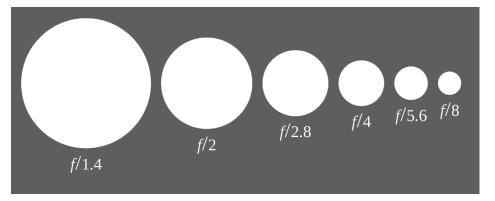
10-метровые Телескопы им. Кека

Параметры телескопа


• Разрешающая способность

$$\theta \approx 1.22 * \frac{\lambda}{D} \approx \frac{1.22 * 206265 * 5.5 * 10^{-7}}{D * 1000 \text{MM}} \approx \frac{138}{D \text{MM}}$$

• Увеличение


$$\Gamma = \frac{F}{f} \equiv \frac{D}{d}$$

• Равнозрачковое увеличение

$$\Gamma = \frac{D_{MM}}{6_{MM}} \Longrightarrow f = \frac{F}{D_{MM}/6_{MM}} = 6 \cdot \frac{F_{MM}}{D_{MM}}$$

Параметры телескопа

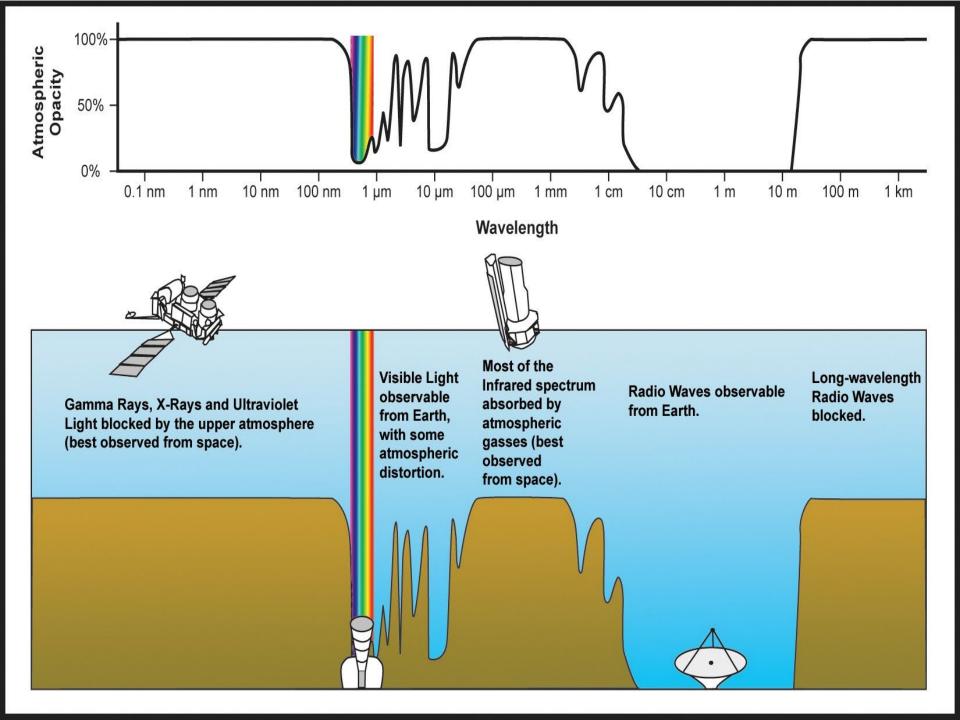
• Относительное отверстие и светосила телескопа:

$$A=rac{D}{F}$$
 $\forall=rac{E}{B}=\left(rac{D}{F}
ight)^2=(A)^2$, E —освещенность, В - яркость

• Масштаб изображения в 1"

•
$$a = F \cdot \sin 1'' = \frac{F \cdot 1''}{206265''}$$

 Предельная звездная величина для наблюдения глазом в телескоп:

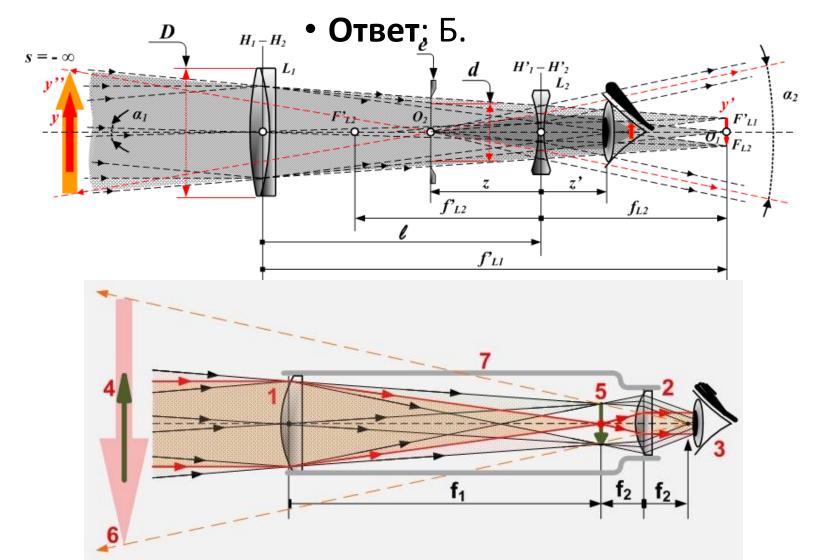

$$m = 2.1^m + 5 \lg D$$

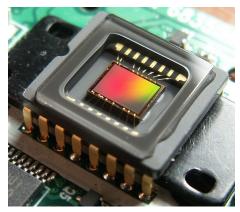
 $m_T = m_\Gamma - 2^m + 2.5 \lg(D \cdot P \cdot t)$

D – диаметр мм

Р – величина увеличения

t – коэффициент пропускания (0,8-0,95)

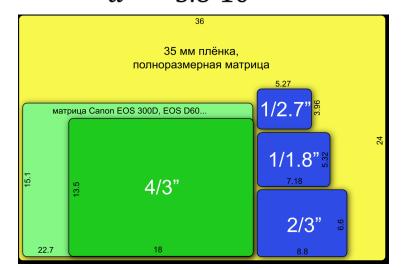



- Хаббл 2.5 м
- $\bullet \frac{S_{ELT}}{S_H} = \frac{D_{ELT}^2}{D_H^2} = 264$
- $E \sim \frac{1}{R^2}$, $V \sim R^3 = >$ $\frac{V_n}{V_0} = (\sqrt{264})^3 =$ 4300
- $\bullet \frac{S_{KEK}}{S_H} = \frac{D_{KEK}^2}{D_H^2} = 15$
- $E \sim \frac{1}{R^2}$, $V \sim R^3 = >$ $\frac{V_n}{V_0} = (\sqrt{15})^3 = 58$

- Задача. Во сколько раз светособирающая площадь 39-метрового телескопа ELT больше площади объектива космического телескопа «Хаббл»? А 10-метрового телескопа «Кек»? Во сколько раз возрастёт объём пространства, в котором ELT сможет наблюдать те же типы объектов, что телескопы «Хаббл» и «Кек»?
- **Ответ**: в 264 раза; в 15 раз; в 4300 раз; в 58 раз.

• Задача. Какая из оптических схем телескопов не переворачивает изображение для наблюдателя: А) Кеплера, Б) Галилея?

- Задача. Определите величину углового поля зрения телескопа с фокусным расстоянием объектива 2 м при использовании приёмника света с матрицей диагональю 10 мм. Ответ выразите минутах дуги.
- Ответ: 17,2′.


• Решение:

• Размер 1' в фокальной плоскости:

•
$$a = F$$
 · $\sin 1' = 5.8 \cdot 10^{-4}$ M

• Количество угловых минут на диагонали приемника:

•
$$\theta = \frac{d}{a} = \frac{10^{-2}}{5.8 \cdot 10^{-4}} = 17.2'$$

Задача. Матрица зеркального фотоаппарата имеет формат 6000×4000 пикселов при размере каждого пиксела 3,7 мкм. С каким объективов с этим фотоаппаратом можно получить изображение полной Луны?

Ответ: №1 и №2.

Объектив	Фокусное расстояние, мм
№ 1	135
№2	500
№3	2000

• Решение:

• Размер диска луны составляет 30' которые должны умещаться по короткой стороне матрицы в фокальной плоскости:

•
$$a = F \cdot \sin 30'$$

•
$$\frac{d}{a} > 1 => F < \frac{d}{\sin 30'} = \frac{3.7 \cdot 10^{-6} \cdot 4000}{8.7 \cdot 10^{-3}} = 1700 \text{ MM}$$

- Задача. Чему равна теоретическая разрешающая способность космического инфракрасного телескопа IRAS (диаметр зеркала 57 см, рабочие длины волн 12, 25, 60 и 100 мкм)?
- **Ответ**: 5.3", 11", 26", 44".
- Решение:
- Разрешение телескопа составляет:

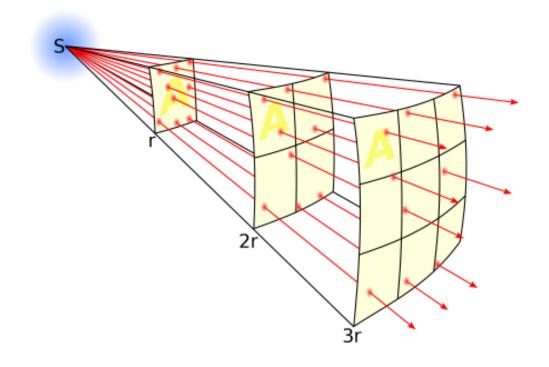
•
$$\theta = 1.22 \cdot 206265'' \frac{\lambda}{D}$$

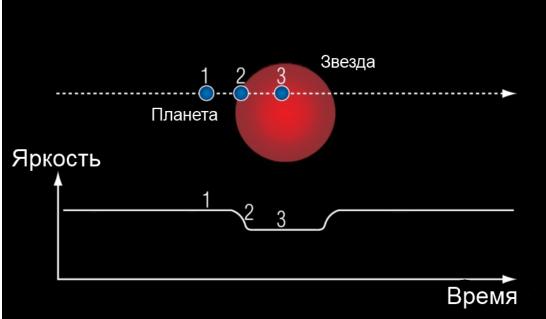
•
$$\theta_{12} = 1.22 \cdot 206265'' \frac{12 \cdot 10^{-6}}{0.57} \approx 5.3''$$

•
$$\theta_{25} = 1.22 \cdot 206265'' \frac{25 \cdot 10^{-6}}{0.57} \approx 11''$$

•
$$\theta_{60} = 1.22 \cdot 206265'' \frac{60 \cdot 10^{-6}}{0.57} \approx 26''$$

•
$$\theta_{100} = 1.22 \cdot 206265'' \frac{100 \cdot 10^{-6}}{0.57} \approx 44''$$


Фотометрия


- Величины:
- L Светимость полная мощность излучения во всех направлениях
- Е освещенность приходящая энергия на данном расстоянии, через единичную площадь
- F поток, приходящая мощность на данном расстоянии, через единичную площадь в единицу времени
- Точечный источник

$$E = Ft = \frac{L}{4\pi R^2} \quad E \sim \frac{1}{R^2}$$

• Протяженный источник

$$E = Ft = \frac{L}{2\pi R} \quad E \sim \frac{1}{R}$$

Формула
$$\frac{E_1}{E_2} = 10^{0.4(m_2-m_1)} \Rightarrow m_1 - m_2 = -2.5 lg \left(\frac{E_1}{E_2}\right)$$

В возрасте 18 лет вычислил орбиты 2 комет.

С 1850 по 1851 года - обсерватория Бишопа.

В 1851 - н. с. обсерватории Редклифф в Оксфорде, Англия.

В 1860 переехал в Мадрас, Индия, где занял должность государственного астронома.

В Мадрасской обсерватории издал каталог 11015 звёзд.

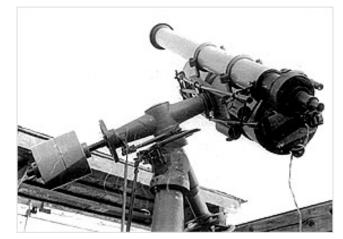
Также открыл там 5 астероидов и 6 переменных звёзд.

Особенно отмечен за своё наблюдение о том, что в системе видимых звёздных величин, введённой греческим астрономом Гиппархом, звёзды первой величины примерно в сто раз ярче, чем звёзды шестой величины.

В 1856 году он предложил взять такое положение за стандарт, чтобы каждое уменьшение звёздной величины представляло уменьшение в яркости равное корню пятой степени из 100

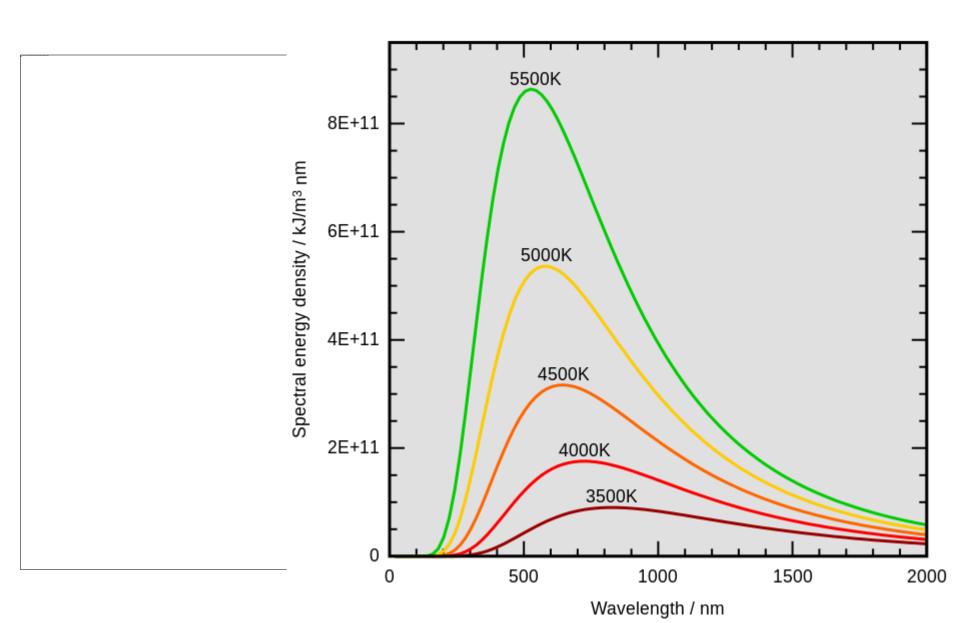
Норман Роберт Погсон 23.03.1829 - 23.06.1891

Шпаргалка


Отношение	Разница в m
2,512	1
6,25	2
16	3
40	4
100	5

Объект	Яркость m_V
Солнце	-26.7
Полная Луна	-12.7
Венера	-4.6
Юпитер	-2.9
Марс	-2.5
Меркурий	-2.4
Сириус	-1.47
Канопус	-0.72
Толиман	-0.3
Сатурн	-0.2
Арктур	-0.04
Вега	0.03
Капелла	0.08
Ригель	0.12

	Объект	Обозначение	m_V
Самые яркие звезды	Сириус	α Большого Пса	-1.47
	Канопус	α Киля	-0.72
	Толиман	α Центавра	-0.27
	Арктур	α Волопаса	-0.04
	Вега	α Лиры	+0.03
	Капелла	α Возничего	+0.08
	Ригель	α Ориона	+0.12
	Процион	α Малого Пса	+0.38
	Ахернар	α Эридана	+0.46
	Бетельгейзе	α Ориона	+0.50 (1.50)
	Альтаир	α Орла	+0.75
	Альдебаран	α Тельца	+0.85
	Антарес	α Скорпиона	+1.09
	Поллукс	В Близнецов	+1.15
	Фомальгаут	α Южной Рыбы	+1.16
	Денеб	α Лебедя	+1.25
	Регул	α Льва	+1.35


	Объект	m_V
	Солнце	-26.7 (в 400 000 раз ярче полной Луны)
	Луна в полнолуние	-12.74
	Вспышка «Иридиума» (максимум)	-9.5
	Сверхновая 1054 года (максимум)	-6.0
	Венера (максимум)	-4.67
	Международная космическая станция (максимум)	-4
	Земля (при наблюдении с Солнца)	-3.84
_	Юпитер (максимум)	-2.94
Объекты	Марс (максимум)	-2.91
	Меркурий (максимум)	-2.45
земного	Сатурн (с кольцами; максимум)	-0.24
SCMITOLO	Звёзды Большого Ковша	+2
неба	Галактика Андромеды	+3.44
неба	Галилеевы спутники Юпитера	+56
	Уран	+5.5
	Самые слабые звёзды, наблюдаемые невооружённым глазом	От +6 до +7.72
	Нептун	+7.8
	Лебедь Х-1	+8.95
	Проксима Центавра	+11.1
	Самый яркий квазар	+12.6
	Самый слабый объект, заснятый в 8-метровый наземный телескоп	+27
	Самый слабый объект, заснятый в космический телескоп «Хаббл»	+31.5

- Задача. На астрографе 10 секунд **3a** накопления света регистрируются звёзды 15^{m} . ДО Сколько времени надо чтобы копить свет, зарегистрировать 18^{m} ? звёзды Фоном неба пренебречь.
- **Ответ**: примерно 160 с.

- Решение. Разница в яркости предельно наблюдаемых объектов составляет 18^m 15^m = 3^m
- Что составляет $10^{0.4\cdot 3} = 15.8 \approx 16$
- Следовательно, необходимо увеличить в 16 раз продолжительность накопления света 160 секунд
- **Ответ**: примерно 160 с.

Закон смещения Вина

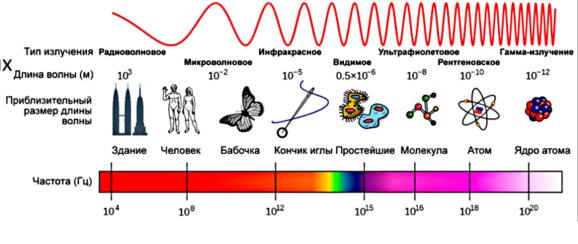
- Задача. Грубо оцените температуру абсолютно чёрных тип излучения тел, максимум излучения которых длина волны (м) приходится на каждый из диапазонов шкалы Приблизительный размер длины электромагнитных колебаний.
- Ответ: T > 300 млн К (гамма-излучение), T ~ 10 млн К (рентген), T ~ 100 000 К (УФ), T ~ 6000 К (видимый), T ~ 300 К (ИК), T < 0,3 К (радио).

• Решение:

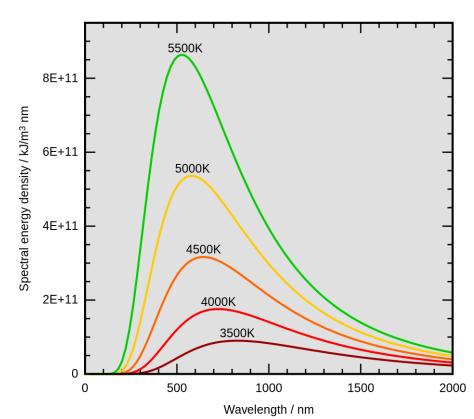
• Для нахождения температуры воспользуемся законом смещения Вина:

•
$$\lambda_{max} = \frac{0.0029}{T}$$

•
$$T_1 = \frac{0.0029}{10^{-12}} \approx 3 \cdot 10^8 \, K$$

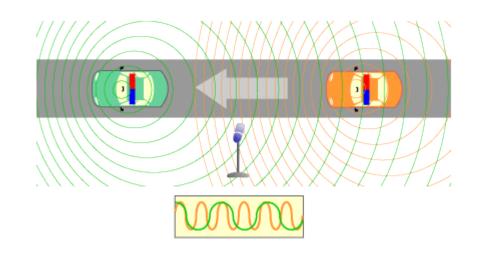

•
$$T_2 = \frac{0.0029}{3.10^{-10}} \approx 10^7 \, K$$

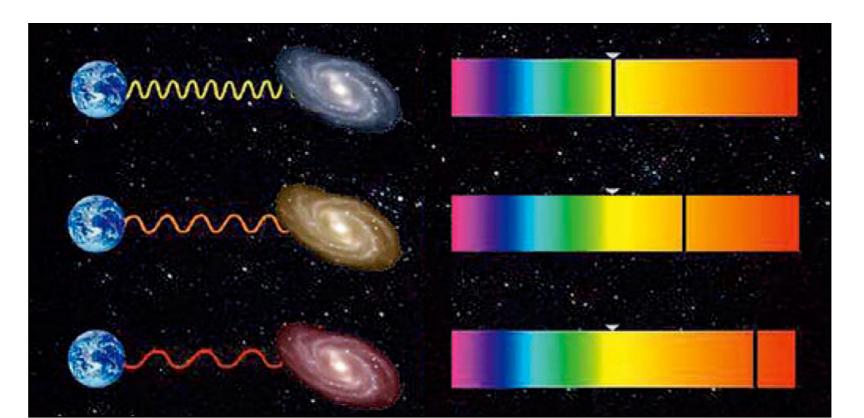
•
$$T_3 = \frac{0.0029}{3.10^{-8}} \approx 10^5 \, K$$


•
$$T_4 = \frac{0.0029}{5.10^{-7}} \approx 6000 \, K$$

•
$$T_5 = \frac{0.0029}{10^{-5}} \approx 300 \, K$$

•
$$T_6 = \frac{0.0029}{10^3} \approx 0.3 \, K$$


Задача №7



Эффект Доплера

• Для скоростей много меньше с

$$\bullet \ \frac{\Delta \lambda}{\lambda} = \frac{\lambda - \lambda_0}{\lambda_0} = \frac{V}{c}$$

- Задача. какой скоростью должен двигаться объект, чтобы линия водорода Нα в его спектре совпала линией поглощения межзвёздной среды λ = 6284 Å? Приближается или удаляется наблюдателя ЭТОТ объект?
- **Ответ**: приближается со скоростью примерно 12 700 км/с.

• Решение. Для решения необходимо воспользоваться эффектом Доплера:

$$\bullet \frac{V}{c} = \frac{\lambda - \lambda_0}{\lambda_0}$$

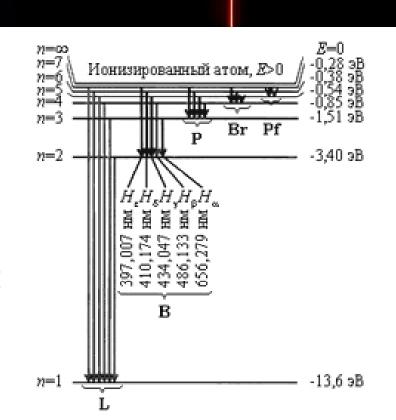
• Так же вспомним что длинна волны не смещенной линии водорода $H\alpha$ составляет $\lambda = 6563 \text{ Å}$

•
$$V = \frac{\lambda - \lambda_0}{\lambda_0} c = \frac{6284 - 6563}{6563} 3$$
 • $10^5 = -12700 \text{ km/cek}$

• Задача. Длина волны линии излучения водорода Нα из-за красного смещения в спектре некоторой галактики увеличилась на 56 нм. На сколько изменилась длина волны излучения линии водорода Нβ? А линии Нδ?

Задача №9

- Ответ: 41,5 нм; 35 нм.
- Решение:
- Эффект Доплера


$$\bullet \frac{V}{c} = \frac{\lambda - \lambda_0}{\lambda_0} = \frac{\Delta \lambda}{\lambda}$$

• Следовательно

•
$$\frac{\Delta \lambda_1}{\lambda_1} = \frac{\Delta \lambda_2}{\lambda_2} = > \Delta \lambda_2 = \frac{\lambda_2}{\lambda_1} \Delta \lambda_1$$

•
$$\Delta\lambda_2 = \frac{\lambda_2}{\lambda_1}\Delta\lambda_1 = \frac{486.1}{656.3}$$
56 = 41.5 нм

•
$$\Delta \lambda_3 = \frac{\lambda_3}{\lambda_1} \Delta \lambda_1 = \frac{410.2}{656.3} 56 = 35 \text{ HM}$$

Немецкая монтировка

- Две оси (Часовой угол и склонение)
- Выставление на полюс мира
- Балансировка
- Возможно часовое и автонаведение
- Неизменное положение поля зрения

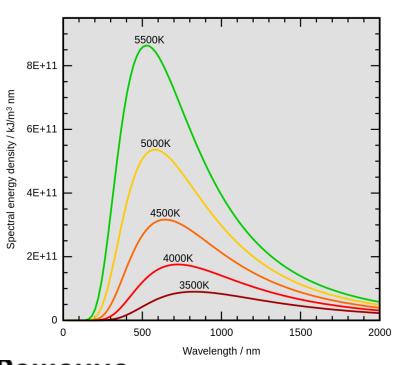
Вилочная монтировка

- Две оси (Часовой угол и склонение)
- Выставление на полюс мира
- Возможно часовое и автонаведение
- Неизменное положение поля зрения

• Две оси

- Полностью ручное наведение
- Поворот поля зрения в процессе ведения
- Простота конструкции

- Задача. В какой области неба нельзя наблюдать с помощью альтазимутальной монтировки? Почему?
- Ответ: в зените; из-за резкого увеличения скорости изменения азимута по мере приближению к зениту (в зените эта скорость становится бесконечно большой).



Задача №10

Светимость

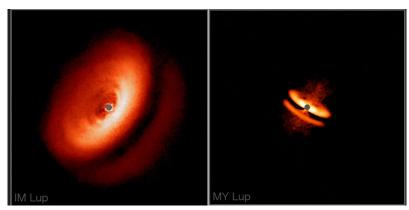
- Задача. Какая звезда излучает больше энергии в среднем инфракрасном диапазоне —диаметром 400 R₀ и температурой 6000 К или радиусом 100 R₀ и температурой 30 000 K?
- Ответ: вторая звезда.

• Решение.

• Определим длинны волн максимума излучения

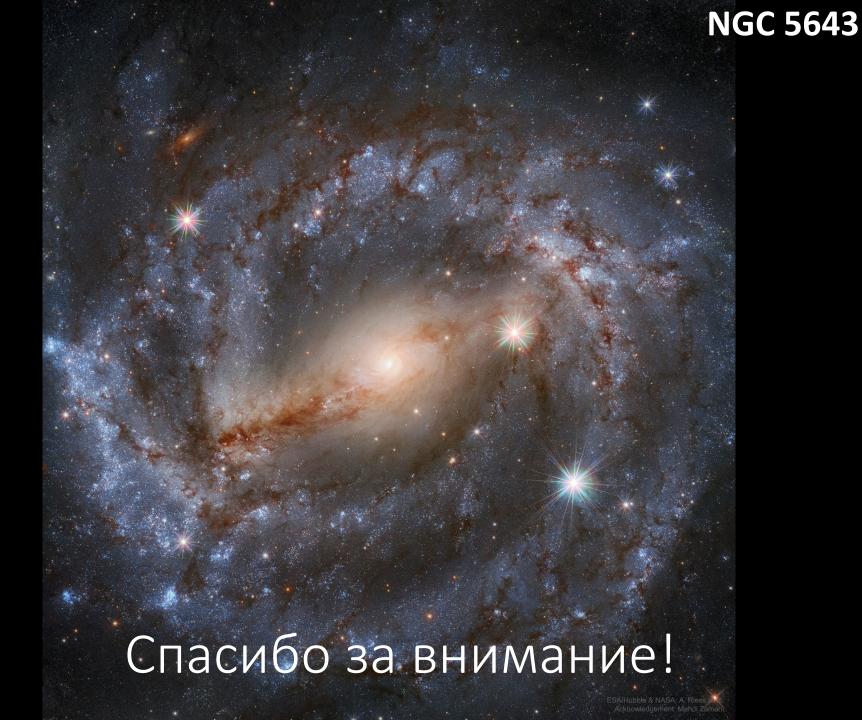
•
$$\lambda_1 = \frac{0.0029}{T} = 483$$
 нм $\lambda_2 = \frac{0.0029}{T} = 96$ нм

• Найдем отношение полных светимостей двух звезд:


• **Решение**. От звезды на пылинке будет следующая освещенность:

•
$$E = \frac{L}{4\pi a^2} = \frac{4\pi R^2 \sigma T^4}{4\pi a^2} = \frac{R^2 \sigma T^4}{a^2}$$

- Пылинка поглотит из этого:
- $E \cdot (1-A) \cdot \pi r_{\Pi}^2$
- Эта энергия распределится по пылинке и уйдет из нее как светимость пылинки:
- $E \cdot (1-A) \cdot \pi r_{\Pi}^2 = L_{\Pi}$
- Следовательно
- $\frac{R^2 \sigma T^4}{a^2} (1 A) \cdot \pi r_{\Pi}^2 = 4\pi r_{\Pi}^2 \sigma T_{\Pi}^4$


•
$$T_{\Pi} = T \cdot \sqrt{\frac{R}{2a}} \cdot \sqrt[4]{1-A}$$

Задача №12

• Задача. Оцените температуру чёрной пылинки, расположенной на расстоянии а от звезды с температурой поверхности Т и радиусом R. А если альбедо пылинки равно A? Считать, что размеры пылинки много больше длины волны излучения.

• Otbet: $T \cdot \sqrt{\frac{R}{2a}}$; $T \cdot \sqrt{\frac{R}{2a}}$.

Ссылки

- Группа задач Астрономических олимпиад в контакте в документах есть задачи олимпиад разных уровней с решениями в разделе Ресурсы https://vk.com/astroolympiads
- Сайт ВсОШ по Астрономии с архивами задач и результатами http://www.astroolymp.ru/
- Сайт Московской Астрономической олимпиады http://mosastro.olimpiada.ru
- Сайт Санкт-Петербургской астрономической олимпиады http://school.astro.spbu.ru/?q=olymp
- Фотоальбом HACA https://photojournal.jpl.nasa.gov/
- Проект карта Вселенной на разных масштабах http://www.atlasoftheuniverse.com/
- Виртуальный планетарий- https://celestiaproject.net/ru/
- Виртуальный планетарий http://www.stellarium.org/
- Задачи и Упражнения по Общей Астрономии http://www.astronet.ru/db/msg/1175352/node1.html